Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Sci Rep ; 12(1): 9959, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1890274

ABSTRACT

SARS-CoV-2 causes major disturbances in serum metabolite levels, associated with severity of the immune response. Despite the numerous advantages of urine for biomarker discovery, the potential association between urine metabolites and disease severity has not been investigated in coronavirus disease 2019 (COVID-19). In a proof-of-concept study, we performed quantitative urine metabolomics in patients hospitalized with COVID-19 and controls using LC-MS/MS. We assessed whether metabolites alterations were associated with COVID-19, disease severity, and inflammation. The study included 56 patients hospitalized with COVID-19 (26 non-critical and 30 critical disease); 16 healthy controls; and 3 controls with proximal tubule dysfunction unrelated to SARS-CoV-2. Metabolomic profiling revealed a major urinary increase of tryptophan metabolites kynurenine (P < 0.001), 3-hydroxykynurenine (P < 0.001) and 3-hydroxyanthranilate (P < 0.001) in SARS-CoV-2 infected patients. Urine levels of kynurenines were associated with disease severity and systemic inflammation (kynurenine, r 0.43, P = 0.001; 3-hydroxykynurenine, r 0.44, P < 0.001). Increased urinary levels of neutral amino acids and imino acid proline were also common in COVID-19, suggesting specific transport defects. Urine metabolomics identified major alterations in the tryptophan-kynurenine pathway, consistent with changes in host metabolism during SARS-CoV-2 infection. The association between increased urinary levels of kynurenines, inflammation and COVID-19 severity supports further evaluation of these easily available biomarkers.


Subject(s)
COVID-19 , Kynurenine , Biomarkers , Chromatography, Liquid , Humans , Inflammation , Kynurenine/metabolism , Metabolomics , SARS-CoV-2 , Tandem Mass Spectrometry , Tryptophan/metabolism
2.
EBioMedicine ; 77: 103893, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1703351

ABSTRACT

BACKGROUND: SARS-CoV-2 targets endothelial cells through the angiotensin-converting enzyme 2 receptor. The resulting endothelial injury induces widespread thrombosis and microangiopathy. Nevertheless, early specific markers of endothelial dysfunction and vascular redox status in COVID-19 patients are currently missing. METHODS: Observational study including ICU and non-ICU adult COVID-19 patients admitted in hospital for acute respiratory failure, compared with control subjects matched for cardiovascular risk factors similar to ICU COVID-19 patients, and ICU septic shock patients unrelated to COVID-19. FINDINGS: Early SARS-CoV-2 infection was associated with an imbalance between an exacerbated oxidative stress (plasma peroxides levels in ICU patients vs. controls: 1456.0 ± 400.2 vs 436 ± 272.1 mmol/L; P < 0.05) and a reduced nitric oxide bioavailability proportional to disease severity (5-α-nitrosyl-hemoglobin, HbNO in ICU patients vs. controls: 116.1 ± 62.1 vs. 163.3 ± 46.7 nmol/L; P < 0.05). HbNO levels correlated with oxygenation parameters (PaO2/FiO2 ratio) in COVID-19 patients (R2 = 0.13; P < 0.05). Plasma levels of angiotensin II, aldosterone, renin or serum level of TREM-1 ruled out any hyper-activation of the renin-angiotensin-aldosterone system or leucocyte respiratory burst in ICU COVID-19 patients, contrary to septic patients. INTERPRETATION: Endothelial oxidative stress with ensuing decreased NO bioavailability appears as a likely pathogenic factor of endothelial dysfunction in ICU COVID-19 patients. A correlation between NO bioavailability and oxygenation parameters is observed in hospitalized COVID-19 patients. These results highlight an urgent need for oriented research leading to a better understanding of the specific endothelial oxidative stress that occurs during SARS-CoV-2. FUNDING: Stated in the acknowledgments section.


Subject(s)
COVID-19 , Adult , Endothelial Cells , Humans , Nitric Oxide , Oxidative Stress , SARS-CoV-2
3.
Lancet Respir Med ; 9(12): 1427-1438, 2021 12.
Article in English | MEDLINE | ID: covidwho-1621131

ABSTRACT

BACKGROUND: Infections with SARS-CoV-2 continue to cause significant morbidity and mortality. Interleukin (IL)-1 and IL-6 blockade have been proposed as therapeutic strategies in COVID-19, but study outcomes have been conflicting. We sought to study whether blockade of the IL-6 or IL-1 pathway shortened the time to clinical improvement in patients with COVID-19, hypoxic respiratory failure, and signs of systemic cytokine release syndrome. METHODS: We did a prospective, multicentre, open-label, randomised, controlled trial, in hospitalised patients with COVID-19, hypoxia, and signs of a cytokine release syndrome across 16 hospitals in Belgium. Eligible patients had a proven diagnosis of COVID-19 with symptoms between 6 and 16 days, a ratio of the partial pressure of oxygen to the fraction of inspired oxygen (PaO2:FiO2) of less than 350 mm Hg on room air or less than 280 mm Hg on supplemental oxygen, and signs of a cytokine release syndrome in their serum (either a single ferritin measurement of more than 2000 µg/L and immediately requiring high flow oxygen or mechanical ventilation, or a ferritin concentration of more than 1000 µg/L, which had been increasing over the previous 24 h, or lymphopenia below 800/mL with two of the following criteria: an increasing ferritin concentration of more than 700 µg/L, an increasing lactate dehydrogenase concentration of more than 300 international units per L, an increasing C-reactive protein concentration of more than 70 mg/L, or an increasing D-dimers concentration of more than 1000 ng/mL). The COV-AID trial has a 2 × 2 factorial design to evaluate IL-1 blockade versus no IL-1 blockade and IL-6 blockade versus no IL-6 blockade. Patients were randomly assigned by means of permuted block randomisation with varying block size and stratification by centre. In a first randomisation, patients were assigned to receive subcutaneous anakinra once daily (100 mg) for 28 days or until discharge, or to receive no IL-1 blockade (1:2). In a second randomisation step, patients were allocated to receive a single dose of siltuximab (11 mg/kg) intravenously, or a single dose of tocilizumab (8 mg/kg) intravenously, or to receive no IL-6 blockade (1:1:1). The primary outcome was the time to clinical improvement, defined as time from randomisation to an increase of at least two points on a 6-category ordinal scale or to discharge from hospital alive. The primary and supportive efficacy endpoints were assessed in the intention-to-treat population. Safety was assessed in the safety population. This study is registered online with ClinicalTrials.gov (NCT04330638) and EudraCT (2020-001500-41) and is complete. FINDINGS: Between April 4, and Dec 6, 2020, 342 patients were randomly assigned to IL-1 blockade (n=112) or no IL-1 blockade (n=230) and simultaneously randomly assigned to IL-6 blockade (n=227; 114 for tocilizumab and 113 for siltuximab) or no IL-6 blockade (n=115). Most patients were male (265 [77%] of 342), median age was 65 years (IQR 54-73), and median Systematic Organ Failure Assessment (SOFA) score at randomisation was 3 (2-4). All 342 patients were included in the primary intention-to-treat analysis. The estimated median time to clinical improvement was 12 days (95% CI 10-16) in the IL-1 blockade group versus 12 days (10-15) in the no IL-1 blockade group (hazard ratio [HR] 0·94 [95% CI 0·73-1·21]). For the IL-6 blockade group, the estimated median time to clinical improvement was 11 days (95% CI 10-16) versus 12 days (11-16) in the no IL-6 blockade group (HR 1·00 [0·78-1·29]). 55 patients died during the study, but no evidence for differences in mortality between treatment groups was found. The incidence of serious adverse events and serious infections was similar across study groups. INTERPRETATION: Drugs targeting IL-1 or IL-6 did not shorten the time to clinical improvement in this sample of patients with COVID-19, hypoxic respiratory failure, low SOFA score, and low baseline mortality risk. FUNDING: Belgian Health Care Knowledge Center and VIB Grand Challenges program.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , COVID-19 Drug Treatment , Cytokine Release Syndrome , Respiratory Insufficiency , Aged , Belgium , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Female , Ferritins , Humans , Hypoxia , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Male , Middle Aged , Oxygen , Prospective Studies , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/virology , SARS-CoV-2 , Treatment Outcome
4.
N Engl J Med ; 385(17): e61, 2021 10 21.
Article in English | MEDLINE | ID: covidwho-1475540

Subject(s)
Oxygen , Humans
5.
Curr Opin Crit Care ; 27(5): 480-486, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1337297

ABSTRACT

PURPOSE OF REVIEW: Although the so-called cytokine storm has been early described and related to a dramatic evolution in severe COVID-19 patients, it soon became clear that those patients display clinical and biological evidence of an immunosuppressive state characterized, among other, by a profound lymphopenia. The negative role of this immune suppression on the outcome raises the question on immune therapies that might improve patient's condition. RECENT FINDINGS: Important positive effects of active immune therapies, such as IL-7 or thymosin-α are already described and warrant confirmation in larger prospective trials. For other therapies, such as interferons, firm conclusions for critically ill COVID-19 patients are lacking as those patients were often excluded from the published trials. Treatment with immunoglobulins or convalescent plasma is a passive strategy to provide specific immunity. Unfortunately, results from large RCTs do not support their use presently. SUMMARY: In this article, we provide a review on active and passive immune boosting strategies that might help treating the most severe COVID-19 patients. We mainly focus on active strategies that include IL-7, thymosin-α, interferons, and vitamin D. Although some positive effects are described, they certainly warrant confirmation in large randomized controlled trials.


Subject(s)
COVID-19 , Coronavirus Infections , COVID-19/therapy , Humans , Immunization, Passive , Prospective Studies , SARS-CoV-2 , COVID-19 Serotherapy
6.
Crit Care ; 25(1): 212, 2021 06 14.
Article in English | MEDLINE | ID: covidwho-1269885

ABSTRACT

BACKGROUND: The severity of coronavirus disease 2019 (COVID-19) is highly variable between individuals, ranging from asymptomatic infection to critical disease with acute respiratory distress syndrome requiring mechanical ventilation. Such variability stresses the need for novel biomarkers associated with disease outcome. As SARS-CoV-2 infection causes a kidney proximal tubule dysfunction with urinary loss of uric acid, we hypothesized that low serum levels of uric acid (hypouricemia) may be associated with severity and outcome of COVID-19. METHODS: In a retrospective study using two independent cohorts, we investigated and validated the prevalence, kinetics and clinical correlates of hypouricemia among patients hospitalized with COVID-19 to a large academic hospital in Brussels, Belgium. Survival analyses using Cox regression and a competing risk approach assessed the time to mechanical ventilation and/or death. Confocal microscopy assessed the expression of urate transporter URAT1 in kidney proximal tubule cells from patients who died from COVID-19. RESULTS: The discovery and validation cohorts included 192 and 325 patients hospitalized with COVID-19, respectively. Out of the 517 patients, 274 (53%) had severe and 92 (18%) critical COVID-19. In both cohorts, the prevalence of hypouricemia increased from 6% upon admission to 20% within the first days of hospitalization for COVID-19, contrasting with a very rare occurrence (< 1%) before hospitalization for COVID-19. During a median (interquartile range) follow-up of 148 days (50-168), 61 (12%) patients required mechanical ventilation and 93 (18%) died. In both cohorts considered separately and in pooled analyses, low serum levels of uric acid were strongly associated with disease severity (linear trend, P < 0.001) and with progression to death and respiratory failure requiring mechanical ventilation in Cox (adjusted hazard ratio 5.3, 95% confidence interval 3.6-7.8, P < 0.001) or competing risks (adjusted hazard ratio 20.8, 95% confidence interval 10.4-41.4, P < 0.001) models. At the structural level, kidneys from patients with COVID-19 showed a major reduction in urate transporter URAT1 expression in the brush border of proximal tubules. CONCLUSIONS: Among patients with COVID-19 requiring hospitalization, low serum levels of uric acid are common and associate with disease severity and with progression to respiratory failure requiring invasive mechanical ventilation.


Subject(s)
COVID-19/metabolism , COVID-19/physiopathology , Kidney Tubules, Proximal/metabolism , Severity of Illness Index , Uric Acid/blood , Aged , Belgium , COVID-19/complications , Cohort Studies , Critical Illness/epidemiology , Humans , Male , Middle Aged , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/metabolism , Outcome Assessment, Health Care , Retrospective Studies
7.
Respir Care ; 66(5): 724-732, 2021 05.
Article in English | MEDLINE | ID: covidwho-1115488

ABSTRACT

BACKGROUND: Prone positioning (PP) during invasive mechanical ventilation improves outcomes of patients with severe ARDS. Recent studies suggest that PP in spontaneously breathing, nonintubated patients with acute respiratory failure is well tolerated and improves oxygenation. However, little is known regarding patient triggered ventilation in intubated patients with ARDS undergoing PP. We conducted a retrospective review of our experience with placing patients in the prone position in 2 cohorts of subjects with moderate and severe ARDS (ie, one cohort with ARDS related to COVID-19, the other with ARDS unrelated to COVID-19), many of whom were receiving pressure support ventilation (PSV). METHODS: We conducted a retrospective analysis in a single 22-bed mixed ICU. The subjects included in the analysis were ≥ 18 y old, met the Berlin definition for moderate or severe ARDS (whether related COVID-19 or not), and underwent PP during invasive ventilation. RESULTS: 39 subjects were included in the analysis: 20 subjects had ARDS related to COVID-19, while 19 had ARDS related to other etiologies. A total of 113 PP episodes were analyzed: 84 during PSV and 29 during volume control continuous mandatory ventilation. PP during PSV was well tolerated and was effective in improving arterial oxygenation (ie, an increase of median [Formula: see text] from 100 mm Hg [interquartile range 75-120] before PP to 135 mm Hg [interquartile range 111-161] at the end of the PP session, P < .0001). No significant difference between continuous mandatory ventilation and PSV was noted regarding arterial oxygenation during PP. Compared with continuous mandatory ventilation mode, PP during PSV was associated with a significant decrease in the use of neuromuscular blocking agents (4% vs 69% of subjects, P < .001), while sedative requirements remained unchanged. CONCLUSIONS: In a retrospective analysis of consecutive intubated subjects with moderate or severe ARDS, related or not to COVID-19, spontaneous breathing during PP was well tolerated and achieved significant improvement in arterial oxygenation.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Humans , Prone Position , Respiration, Artificial , Respiratory Distress Syndrome/therapy , Retrospective Studies , SARS-CoV-2
8.
Lancet Reg Health Eur ; 2: 100019, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-988716

ABSTRACT

BACKGROUND: Several studies have investigated the predictors of in-hospital mortality for COVID-19 patients who need to be admitted to the Intensive Care Unit (ICU). However, no data on the role of organizational issues on patients' outcome are available in this setting. The aim of this study was therefore to assess the role of surge capacity organisation on the outcome of critically ill COVID-19 patients admitted to ICUs in Belgium. METHODS: We conducted a retrospective analysis of in-hospital mortality in Belgian ICU COVID-19 patients via the national surveillance database. Non-survivors at hospital discharge were compared to survivors using multivariable mixed effects logistic regression analysis. Specific analyses including only patients with invasive ventilation were performed. To assess surge capacity, data were merged with administrative information on the type of hospital, the baseline number of recognized ICU beds, the number of supplementary beds specifically created for COVID-19 ICU care and the "ICU overflow" (i.e. a time-varying ratio between the number of occupied ICU beds by confirmed and suspected COVID-19 patients divided by the number of recognized ICU beds reserved for COVID-19 patients; ICU overflow was present when this ratio is ≥ 1.0). FINDINGS: Over a total of 13,612 hospitalised COVID-19 patients with admission and discharge forms registered in the surveillance period (March, 1 to August, 9 2020), 1903 (14.0%) required ICU admission, of whom 1747 had available outcome data. Non-survivors (n = 632, 36.1%) were older and had more frequently various comorbid diseases than survivors. In the multivariable analysis, ICU overflow, together with older age, presence of comorbidities, shorter delay between symptom onset and hospital admission, absence of hydroxychloroquine therapy and use of invasive mechanical ventilation and of ECMO, was independently associated with an increased in-hospital mortality. Similar results were found in in in the subgroup of invasively ventilated patients. In addition, the proportion of supplementary beds specifically created for COVID-19 ICU care to the previously existing total number of ICU beds was associated with increased in-hospital mortality among invasively ventilated patients. The model also indicated a significant between-hospital difference in in-hospital mortality, not explained by the available patients and hospital characteristics. INTERPRETATION: Surge capacity organisation as reflected by ICU overflow or the creation of COVID-19 specific supplementary ICU beds were found to negatively impact ICU patient outcomes. FUNDING: No funding source was available for this study.

9.
Ann Intensive Care ; 10(1): 125, 2020 Sep 29.
Article in English | MEDLINE | ID: covidwho-809114

ABSTRACT

OBJECTIVE: Critically ill patients admitted in ICU because of COVID-19 infection display severe hypoxemic respiratory failure. The Surviving Sepsis Campaign recommends oxygenation through high-flow nasal cannula over non-invasive ventilation. The primary outcome of our study was to evaluate the effect of the addition of a surgical mask on a high-flow nasal cannula system on oxygenation parameters in hypoxemic COVID-19 patients admitted in ICU who do not require urgent intubation. The secondary outcomes were relevant changes in PaCO2 associated with clinical modifications and patient's feelings. DESIGN: We prospectively assessed 21 patients admitted in our mixed Intensive Care Unit of the Cliniques Universitaires Saint Luc. MAIN RESULTS: While FiO2 was unchanged, we demonstrate a significant increase of PaO2 (from 59 (± 6), to 79 mmHg (± 16), p < 0.001), PaO2/FiO2 from 83 (± 22), to 111 (± 38), p < 0.001) and SaO2 (from 91% (± 1.5), to 94% (± 1.6), p < 0.001), while the patients were under the surgical mask. The SpO2 returned to pre-treatment values when the surgical mask was removed confirming the effect of the device rather than a spontaneous positive evolution. CONCLUSION: A surgical mask placed on patient's face already treated by a High-flow nasal cannula device improves COVID-19 patient's oxygenation admitted in Intensive Care Unit for severe hypoxemic respiratory failure without any clinically relevant side.

10.
Acta Haematol ; 144(3): 319-321, 2021.
Article in English | MEDLINE | ID: covidwho-802601

ABSTRACT

A 54-year-old man with a long history of severe haemophilia A treated prophylactically with efmoroctocog alpha (3,000 IU twice weekly) was diagnosed with COVID-19 infection. He had multiple risk factors for COVID-19 severity including obesity, diabetes mellitus and hypertension. He required prolonged intensive care unit (ICU) stay due to the severity of respiratory failure until his death on day 24. During his ICU stay, he received a continuous infusion of efmoroctocog alpha in order to maintain factor VIII activity between 80 and 100%, together with therapeutic doses of low-molecular-weight heparin targeting anti-Xa activity above 0.5 IU/mol. He tolerated numerous invasive procedures without bleeding. At post-mortem examination, there was no evidence for thrombosis or haemorrhage in the different organs.


Subject(s)
COVID-19/diagnosis , Factor VIII/therapeutic use , Hemophilia A/drug therapy , Heparin, Low-Molecular-Weight/therapeutic use , Immunoglobulin Fc Fragments/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Blood Coagulation Tests , COVID-19/complications , COVID-19/virology , Hemophilia A/complications , Hemophilia A/pathology , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index
11.
Eur J Drug Metab Pharmacokinet ; 45(6): 703-713, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-784916

ABSTRACT

BACKGROUND AND OBJECTIVE: In the absence of characterization on pharmacokinetics and reference concentrations for hydroxychloroquine in COVID-19 patients, the dose and treatment duration for hydrochloroquine are currently empirical, mainly based on in vitro data, and may vary across national guidelines and clinical study protocols. The aim of this paper is to describe the pharmacokinetics of hydroxychloroquine in COVID-19 patients, considered to be a key step toward its dosing optimization. METHODS: We have developed a population pharmacokinetic model for hydroxychloroquine in COVID-19 patients using prospectively collected pharmacokinetic data from patients either enrolled in a clinical trial or treated with hydroxychloroquine as part of standard of care in two tertiary Belgian hospitals. RESULTS: The final population pharmacokinetic model was a one-compartment model with first-order absorption and elimination. The estimated parameter values were 9.3/h, 860.8 L, and 15.7 L/h for the absorption rate constant, the central compartment volume, and the clearance, respectively. The bioavailability factor was fixed to 0.74 based on previously published models. Model validations by bootstraps, prediction corrected visual predictive checks, and normalized prediction distribution errors gave satisfactory results. Simulations were performed to compare the exposure obtained with alternative dosing regimens. CONCLUSION: The developed models provide useful insight for the dosing optimization of hydroxychloroquine in COVID-19 patients. The present results should be used in conjunction with exposure-efficacy and exposure-safety data to inform optimal dosing of hydroxychloroquine in COVID-19.


Subject(s)
Antimalarials/administration & dosage , Antimalarials/pharmacokinetics , Coronavirus Infections/drug therapy , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/pharmacokinetics , Pneumonia, Viral/drug therapy , Adult , Aged , Aged, 80 and over , Biological Availability , COVID-19 , Coronavirus Infections/metabolism , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/metabolism , Young Adult , COVID-19 Drug Treatment
12.
Kidney Int ; 98(5): 1296-1307, 2020 11.
Article in English | MEDLINE | ID: covidwho-704001

ABSTRACT

Coronavirus disease 2019 (COVID-19) is commonly associated with kidney damage, and the angiotensin converting enzyme 2 (ACE2) receptor for SARS-CoV-2 is highly expressed in the proximal tubule cells. Whether patients with COVID-19 present specific manifestations of proximal tubule dysfunction remains unknown. To test this, we examined a cohort of 49 patients requiring hospitalization in a large academic hospital in Brussels, Belgium. There was evidence of proximal tubule dysfunction in a subset of patients with COVID-19, as attested by low-molecular-weight proteinuria (70-80%), neutral aminoaciduria (46%), and defective handling of uric acid (46%) or phosphate (19%). None of the patients had normoglycemic glucosuria. Proximal tubule dysfunction was independent of pre-existing comorbidities, glomerular proteinuria, nephrotoxic medications or viral load. At the structural level, kidneys from patients with COVID-19 showed prominent tubular injury, including in the initial part of the proximal tubule, with brush border loss, acute tubular necrosis, intraluminal debris, and a marked decrease in the expression of megalin in the brush border. Transmission electron microscopy identified particles resembling coronaviruses in vacuoles or cisternae of the endoplasmic reticulum in proximal tubule cells. Among features of proximal tubule dysfunction, hypouricemia with inappropriate uricosuria was independently associated with disease severity and with a significant increase in the risk of respiratory failure requiring invasive mechanical ventilation using Cox (adjusted hazard ratio 6.2, 95% CI 1.9-20.1) or competing risks (adjusted sub-distribution hazard ratio 12.1, 95% CI 2.7-55.4) survival models. Thus, our data establish that SARS-CoV-2 causes specific manifestations of proximal tubule dysfunction and provide novel insights into COVID-19 severity and outcome.


Subject(s)
Coronavirus Infections/physiopathology , Kidney Tubules, Proximal/physiopathology , Pneumonia, Viral/physiopathology , Aged , Aged, 80 and over , Belgium/epidemiology , Betacoronavirus , COVID-19 , Case-Control Studies , Coronavirus Infections/mortality , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Humans , Kidney Tubules, Proximal/ultrastructure , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , Pneumonia, Viral/therapy , SARS-CoV-2
14.
Haemophilia ; 26(5): 768-772, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-209666

ABSTRACT

A new disease (COVID-19) caused by a coronavirus (SARS-CoV-2) that appeared in China at the end of 2019 is currently spreading globally. This emerging virus is mainly responsible for respiratory tract infections and potentially fatal pneumonia, mainly in more frail patients. Persons with haemophilia of variable severity and from all parts of the world will likely be infected and develop COVID-19. We here propose practical guidance for the in-hospital specific management of haemophilia persons with COVID-19 including their possible transfer to the intensive care unit. Rapid identification of the haemophilia status, undelayed and regular liaison with the haemophilia team, proper therapy with factor concentrates or alternative treatments appear instrumental to prevent haemophilia-related complications in this setting. Information of patients and their families about COVID-19, psychological support and good appreciation of the impact of haemophilia on therapeutic decisions including end-of-life directives are also addressed.


Subject(s)
COVID-19/therapy , Disease Management , Hemophilia A/therapy , COVID-19/complications , Hemophilia A/complications , Hospitalization , Humans , Intensive Care Units , Practice Guidelines as Topic
SELECTION OF CITATIONS
SEARCH DETAIL